If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x+5=160
We move all terms to the left:
x^2+6x+5-(160)=0
We add all the numbers together, and all the variables
x^2+6x-155=0
a = 1; b = 6; c = -155;
Δ = b2-4ac
Δ = 62-4·1·(-155)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{41}}{2*1}=\frac{-6-4\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{41}}{2*1}=\frac{-6+4\sqrt{41}}{2} $
| s-$15=$15.04 | | (1/4)^x=-2x-3 | | 9c2-18c+8=0 | | 360/x=18 | | 13g=(9-12g)-5 | | 18-(3*x)=39 | | 5^x-3=75 | | -19=y/3-7 | | 18=u/3+12 | | 2x+9x−2=312x+9x−2=312x+9x−2=312x+9x−2=31 | | 18=-0.25x+20.5 | | y/4-15=18 | | 10=-4n+6n | | 7y+14=84 | | 4.2x+100=17.64+10x | | 2/3(6x+2)=10x+1 | | 1/5x+15=32 | | 4^2x=17 | | 4x-5+2(x-3)=12=7 | | 1.2(b-12)=42 | | 4^x=19 | | (x+5)^2-4=12 | | 2/5x-19/5=-11x | | 3/8(22x+3)=1/8(6x+19) | | 2x=6–x | | 3+6x=-21 | | 60=2(x+2) | | 2x=6–x | | 27=-6n=9 | | -8x(4x-5)=-10-7x | | 7x-4=7^8 | | 3(5x+22)=4(x+55) |